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ABSTRACT
Silicon effects on tensile and creep properties, and thermal conductivity of

Hi-Nicalon SiC/SiC composites have been investigated. The composites consist
of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats
and a silicon matrix, or a mixture of silicon matrix and SiC particles. The
Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained ~24 and
13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has
no significant effect on creep and thermal conductivity, but does decrease the
primary elastic modulus and stress corresponding to deviation from linear stress-
strain behavior.

INTRODUCTION
SiC/SiC composites fabricated by the melt infiltration (MI) approach are

candidate materials for next generation turbine components because of their
performance potential and complex shape fabrication capability [1,2]. However,
currentstate- of - the-art MI SiC/SiC composites are limited to 1200 0C
applications partly due to the SiC fibers and partly due to the SiC matrix that
contains residual silicon ranging from 10 to 30 vol.%. Residual silicon in SiC/SiC
composites is considered to be detrimental for two reasons: First, the possibility of
silicon sweating out from rotating components at temperatures >1400 0C during
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hot streak conditions and damaging the metallic attachments; second, the
possibility of mechanical property degradation of SiC/SiC composites due to
diffusion of residual silicon through the composite constituents after long term
exposure at temperatures below 1400 0C.

Even in monolithic reaction bonded silicon carbide (RBSC), silicon effects
have not been clearly understood. It is hypothesized in the ceramic literature that
in unstressed conditions, isolated regions of silicon in the SiC matrix may not
have a major effect on properties, but in stressed conditions, silicon may enhance
crack growth at temperatures above 1200 0C [3-6]. In the case of SiC/SiC
composites fabricated by the MI process, silicon is present as a continuous phase
and thus may affect themo-mechanical properties. However, varying the silicon
content in the SiC/SiC composites is difficult because of significant variation in
the vol % of the chemical vapor infiltrated (CVI) silicon carbide coating, closed
porosity in the preform, and SiC particle distribution within a batch as well as
between batches of the composite specimens.

The long-term objective of this study is to determine the influence of residual
silicon on the thermo-mechanical properties of SiC/SiC composites. In this paper,
however, the preliminary results of silicon effects on tensile and creep properties,
and thermal conductivity are reported.

EXPERIMENTAL PROCEDURES
Preforms of 2-D woven, 5 harness satin (5HS), BN/SiC coated Hi-NicalonTM

SiC fibers, and 5 HS Hi-Nicalon SiC/SiC composites were purchased from
Honeywell Composites Inc., Delaware. The preforms contained 8 layers of
2-D woven SiC fiber mats, an  ~0.5 µm thick BN layer, and a 3-5 µm thick
SiC layer on the SiC fibers. The Nippon Carbon Company, Japan fabricated the
Hi-Nicalon fibers and Albany International Techniweave Inc. Rochester, prepared
the fiber mats. The nominal dimensions of the preforms after CVD coating were
229-mm (L) x 152-mm (W) x 2-mm (T). The as-received preforms contained
~40 vol. % SiC fibers, ~18 vol% BN/SiC coatings, and 20-40 vol% of
interconnected open porosity. In the SiC/SiC composites, the vol% SiC fibers and
the BN/SiC coatings were similar to that in the preform and the SiC matrix
contained ~13 vol% silicon.

The preforms and the composite panels were cut into specimens of dimension
152-mm (L) x 12.5-mm (W) x 2-mm (T) using a diamond impregnated metal
bonded cut-off wheel. The cut specimens were degreased with a solvent and then
dried at 100 0C.

The SiC/silicon composites were fabricated by infiltrating electronic grade
silicon into SiC preform specimens.The melt infiltration was performed at
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0C in a vacuumfurnaceequippedwith a graphitefixture and a graphite-
heating element.

Some preform specimens were also infiltrated with epoxy. Baseline strength
data of the epoxy infiltrated preform specimens were compared with those of
SiC/silicon and SiC/SiC composites to monitor possible degradation of the
preforms during the melt infiltration process.

Specimen preparation
Some of the specimens were sectioned, mounted in a metallographic mold,

ground successively on 40-µm down to 1-µm diamond particle impregnated metal
disks, and polished in a vibratory polisher on a micro cloth using 0.3 µm diamond
powder paste. The mounted specimens were coated with a thinlayer of carbon or
palladium in a vacuumevaporator to avoid charging during observation in a
scanning electron microscope(SEM).

For tensile tests, dog-bone shaped specimens were machined from the
composite block by using an ultrasonic SiC slurry impact machine. At each
specimen end, two glass fiber-reinforced epoxy tabs of dimension 37 mm x 12
mm x 1 mm were bonded, leaving ~60 mm for the gage section. A spring-loaded
clip-on gauge (25 mm gage length) was attached to the gage section of the
specimen to monitor the strain during the tensile test. The specimens were tested
at a crosshead speed of 1.3 mm/min in a servo-controlled tensile testing machine
equipped with self-aligning grips until failure. Testing was performed in air at
temperatures from 25 to 1400 0C. A testing procedure similar to that described in
reference [7] was followed.

The creep testing was conducted in an Instron 4502 machine according to an
ASTM procedure (ASTM C1337-96). Specimen dimensions were similar to those
used for tensile testing. Strain was monitored by attaching a spring-loaded clip-on
gage to the 25-mm gage section. Testing was performed in air at 1200 0C at stress
levels of 35, 65, and 103 MPa.

A commercial vendor performed thermal diffusivity measurements by the
laser flash method from 25 to 1400 0C in argon. ASTM procedure ASTM 1461-92
was used. The thermal conductivity was calculated knowing the density and heat
capacity data.

RESULTS

Microstructure
The optical photographs of the cross-section of the SiC/silicon and SiC/SiC

composites are shown in fig 1. The light regions in the figure are silicon, the
grayish regions are the SiC fibers or CVI SiC coating or SiC particles, and the

1420
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black region around the SiC fibers is the CVI BN coating. In both composites no
reaction between the SiC coating and silicon was noticed, but isolated closed
porosity can be observed.

Tensile properties
The room temperature tensile stress-strain curves for the 5HS SiC/Epoxy,

SiC/silicon, and SiC/SiC composites are shown in Fig. 2. All three composites
displayed similar stress-strain behavior: an initial linear region followed by a non-
linear region. The values of stress corresponding to deviation from linearity (DFL)
and primary elastic modulus appear to increase from the SiC/Epoxy to the
SiC/SiC composites. Literature reported values for room temperature elastic
modulus of SiC, silicon and epoxy matrix are 345 [8], 112 [9], 1 GPa,
respectively.  Comparison of the matrix modulus and the corresponding

Fig. 1  Optical micrographs of the cross-section of the melt infiltrated 5 HS Hi-
            Nicalon SiC/SiC composites: (a) silicon matrix  (b) SiC+silicon matrix
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DFL values for the composite suggests that the DFL value is influenced by the
matrix modulus. The values of the secondary elastic modulus and the ultimate
tensile strength (UTS) for the three composites appear to be similar, indicating
that no significant degradation of the preforms during MI processing condition.
Variation of the primary tensile elastic modulus with temperature for the
SiC/silicon and SiC/SiC composites is shown in Fig.3. As indicated in this figure,
the primary elastic modulus of the SiC/silicon composites is lower than that of

Fig. 3  Variation of primary tensile elastic modulus with temperature for the
            Hi-Nicalon SiC/silicon and SiC/SiC composites tested in air.
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the SiC/SiC composites. As the test temperature increases the elastic modulus
for the SiC/SiC composite remains nearly the same up to 800 0C. Beyond this
temperature, it decreases gradually. On the other hand, the elastic modulus value
for the SiC/Silicon composites appears to decrease continuously with increasing
temperature. Figure 4 shows the variation of DFL and UTS with increasing test
temperature for the two composites. Across the test temperature range, the DFL
values for SiC/SiC composites are ~20% higher than those for the SiC/silicon
composites. The UTS of SiC/silicon at room temperature is higher than that for
the SiC/SiC composites, but above 1000 0C, UTS for SiC/silicon composites are
lower than that for the SiC/SiC composites.

Creep properties
The tensile creep measurements were performed at 1200 0C in air and at

stress levels below the DFL value to avoid through-the-thickness matrix cracks
and environment assisted creep damage of the SiC fibers. Both of these factors are
known to complicate the understanding of the creep mechanism. Figure 5 shows
the tensile creep behavior for the Hi-Nicalon SiC/silicon and SiC/SiC composites
tested at 35 MPa in air. It is clear from this figure that the total creep strain after
100-hr exposure for the SiC/silicon composites is significantly lower than that for
the SiC/SiC composites. Figure 6 shows the total tensile creep strain accumulated
at 35, 59, and 103 MPa stress levels in 100-hr creep tested specimens for both
composites. According to Fig. 7, the 100-hr creep strain at the three stresses for
the SiC/SiC composites is half an order-of-magnitude higher than that for the
SiC/Silicon composites. Two possible reasons for the surprisingly higher creep
rate in SiC/SiC composites are to partial damage to the CVI SiC coating during
processing, or a thinner CVI SiC coating.
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Fig. 5  Tensile creep behavior for the Hi-Nicalon SiC/silicon and SiC/SiC
            composites tested in air at 35 MPa.

Fig. 6   Comparison of 100-hr tensile creep strain for the Hi-Nicalon SiC/SiC and
Hi-Nicalon/siliconcompositestestedat12000C in air.

Thermal conductivity
Variation of the transverse thermal conductivity with temperature in argon is

plotted in Fig. 7 for the Hi-Nicalon SiC/silicon and SiC/SiC composites. At room
temperature, the transverse thermal conductivity for the SiC/SiC composites is
higher than that for the SiC/silicon composites. As test temperature increases, the
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difference between the thermal conductivity of these two materials decreases, and
beyond 1100 0C, the thermal conductivity of both materials is nearly the same.

 Fig. 7   Variation of transverse thermal conductivity with temperature for the
              Hi-Nicalon SiC/silicon and SiC/SiC composites tested in argon.

SUMMARY OF RESULTS
Based on the limited thermo-mechanical data generated on the Hi-Nicalon

SiC/silicon and SiC/SiC composites, we conclude the following.

(1) Residual silicon appears reduce to the primary elastic modulus and stress
corresponding to deviation from linearity in SiC/SiC composites primarily due
to lower elastic modulus of the silicon.

(2) At 1200 0C, the tensile creep  (at stress levels below DFL) and transverse
thermal conductivity of the Hi-Nicalon SiC/SiC composites are not adversely
affected by matrix residual silicon levels up to 24 vol%.
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